Semi-supervised Marginal Fisher Analysis for Hyperspectral Image Classification
نویسندگان
چکیده
The problem of learning with both labeled and unlabeled examples arises frequently in Hyperspectral image (HSI) classification. While marginal Fisher analysis is a supervised method, which cannot be directly applied for Semi-supervised classification. In this paper, we proposed a novel method, called semi-supervised marginal Fisher analysis (SSMFA), to process HSI of natural scenes, which uses a combination of semi-supervised learning and manifold learning. In SSMFA, a new difference-based optimization objective function with unlabeled samples has been designed. SSMFA preserves the manifold structure of labeled and unlabeled samples in addition to separating labeled samples in different classes from each other. The semi-supervised method has an analytic form of the globally optimal solution, and it can be computed based on eigen decomposition. Classification experiments with a challenging HSI task demonstrate that this method outperforms current state-of-the-art HSI-classification methods.
منابع مشابه
کاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملA New Semi-Supervised Classification Strategy Combining Active Learning and Spectral Unmixing of Hyperspectral Data
Hyperspectral remote sensing allows for the detailed analysis of the surface of the Earth by providing high-dimensional images with hundreds of spectral bands. Hyperspectral image classification plays a significant role in hyperspectral image analysis and has been a very active research area in the last few years. In the context of hyperspectral image classification, supervised techniques (whic...
متن کاملSemi-supervised feature learning for hyperspectral image classification
Hyperspectral image has high-dimensional Spectral–spatial features, those features with some noisy and redundant information. Since redundant features can have significant adverse effect on learning performance. So efficient and robust feature selection methods are make the best of labeled and unlabeled points to extract meaningful features and eliminate noisy ones. On the other hand, obtaining...
متن کاملA novel semi-supervised learning framework for hyperspectral image classification
In this paper, we propose a novel semi-supervised learning classification framework using box-based smooth ordering and Multiple 1D-embedding-based interpolation method in Ref. 25 for hyperspectral images. Due to the lack of labeled samples, conventional supervised approaches cannot generally perform efficient enough. On the other hand, obtaining labeled samples for hyperspectral image classifi...
متن کامل